2005 GTO

eheath

Active member
Staff member
i just saw a ad for it, looks so sick, 6 speed, 6.0 litre V8, 400 HP, dual split exaust, looks awesome

'i think i'll go with shouldabeen for the first name and abeejay for the middle name, reguardless of if its a boy or girl'-CameIToeJam on what he would name his kids

i hate ski patrolers
 
eh. decsent engine, but its just a pontiac grand am with a beefed up V8. ugly ass car. its got nothing on the original gto. but the new mustang gt, thats killer.

 
^the gtos trans isnt geared good in my opinion it shifts very long and takes some force too, thats even with the stock short throw. the pedals may spaced to far apart for people with smaller feet, my size 13 nothing is too far apart. the neet mustang gt is badass its got only 300hp and its only about .2 secs slower than the gto plus it costs about 7500 less!! my 2 cents

I'll drive it untill the wheels fall off, then I'll buy new wheels!
 
o well nothing beats my 1990 honda accord, 5 speed, V4 prob like -3.0 litre engine with about 5 Hp

'i think i'll go with shouldabeen for the first name and abeejay for the middle name, reguardless of if its a boy or girl'-CameIToeJam on what he would name his kids

i hate ski patrolers
 
3.0 litre? good luck big guy

---------------------------------------------------

------------------------

'you pissed on a Black guy?! ......thats horrible-PJ

Like its any different than pissing on a white man, some people boggle my mind. hahaha hows that for race equality, in our backasswards society

'Proud Member of the NS Praetorian Guard

Viva La Praetorian Bitches'
 
the new GT40 is by far the dopest new American car you can buy. So damn cool.

___________________________________________________

no,my parents didnt go to college, my dad has a grade 9 education and my mom is a stupid slut -lateralis

'I don't like people who take drugs... Customs men for example.'

 
the new gto does not look sick at all. the old gtos are where its at. the new ones look like a bloated cavalier. it doesnt look nearly as sporty as it should

hello my name is driskey.
 
the new weak mustangs?? the gto's are sweet. all aluminum 350's, 6 speed on the floor. yessir, id drive one.

**************************************************************************

If i lived in a perfect world, i would spend my days skiing in the sun, the party never ends in perfect world. Nacho cheese and anarchy, boy that sure sounds good to me, im ready to move into a perfect world.

NS ARMY, whatever is right below the General

 
yeah pontiacs are sweet, for the first 15,000 miles

--------------------

HIGH NORTH SESSION 4

The Hot Sauce Champion of the World
 
Horse Power^ is a mathematical answer to an equation using, the torque, and Rpm's, so they are directly related buddy.

---------------------------------------------------

------------------------

'you pissed on a Black guy?! ......thats horrible-PJ

Like its any different than pissing on a white man, some people boggle my mind. hahaha hows that for race equality, in our backasswards society

'Proud Member of the NS Praetorian Guard

Viva La Praetorian Bitches'
 
yeah the ford falcons are siiiiiiiick

---------------------------------------------------

------------------------

'you pissed on a Black guy?! ......thats horrible-PJ

Like its any different than pissing on a white man, some people boggle my mind. hahaha hows that for race equality, in our backasswards society

'Proud Member of the NS Praetorian Guard

Viva La Praetorian Bitches'
 
yeah, but the 400 horsepower car will Increase RPM's alot faster, and in a real life situation the torque differrence would n't be that much, and the 400 HP car would smoke it, if they were both equal weight.

---------------------------------------------------

------------------------

'you pissed on a Black guy?! ......thats horrible-PJ

Like its any different than pissing on a white man, some people boggle my mind. hahaha hows that for race equality, in our backasswards society

'Proud Member of the NS Praetorian Guard

Viva La Praetorian Bitches'
 
no, if one car has a max of 8000rpm and another car only has a max of 6000rpm but has more torque it will win. it does not matter if u have all the rpm in the world because the guy with the torque will get his rpms up fast and beat u down the strait away. whats the point of all the rpm if u cant use it?

 
It's not total RPM's, It's the ability to use It's peak power band, and the more Horsepower you have, the larger the band is.

Read this;

HP=RPM x Torque/5252

Horsepower: How To Get It

As described in the equation above, engines generate horsepower by the pressure in the combustion chamber acting on the piston top to force it down the bore in order to make the crankshaft spin. This generates a torque force that allows work to be done at a rate dependent on the engine's speed and the magnitude of the torque.

Looking deeper into the formula for horsepower, we find there are four variables that contribute to the power generation in an internal combustion engine. They are:

· Mean effective pressure acting on the piston top. · The stroke length of the crankshaft. · The square area of the piston top. · The number of power strokes per minute.

The following equation explains and shows the relationship of how these variables influence horsepower output of a four-stroke internal combustion engine:

HP= MEP x CID x RPM/33,000 x 12 x 2

Here's a quick explanation of the relationship of the values of this formula. MEP is the theoretical mean effective pressure acting on the piston top through its stroke. Notice that cylinder pressure is divided by the work of 1 hp (33,000 ft-lb). These are the force units. Cubic inch displacement (CID) reflects piston top area and the crankshaft's stroke length, which is divided by 12 to convert the value to feet. And finally, the number of power strokes per minute for a four-stroke engine is the term RPM/2 because the cylinder fires every other revolution.

This equation predicts theoretical horsepower, not brake horsepower. It does not account for the frictional power losses of the engine. When you measure on an engine dyno, you measure the net power output of the engine after all losses. The reason it's good to know the math and physical reasoning behind power generation is that it shows you exactly where to make changes to improve the performance of your engine. If you work with the equation, you'll see that to increase power output you have to increase one of these variables. In other words, you have to increase the mean effective pressure in the cylinders, the stroke, the bore size, or the engine speed.

---------------------------------------------------

------------------------

'you pissed on a Black guy?! ......thats horrible-PJ

Like its any different than pissing on a white man, some people boggle my mind. hahaha hows that for race equality, in our backasswards society

'Proud Member of the NS Praetorian Guard

Viva La Praetorian Bitches'
 
So if you actually read it, they are all related. In order to get Horsepower, you add torque, and/or the ability to get more RPM's, at a faster rate. The faster you get through through the RPM's creates Horsepower. SO horsepower is a combo, OF good torque and RPM's. So yes torque is really important, but the horsepower is the combo of the two, making it an easier to number to quickly judge the power of a car.

---------------------------------------------------

------------------------

'you pissed on a Black guy?! ......thats horrible-PJ

Like its any different than pissing on a white man, some people boggle my mind. hahaha hows that for race equality, in our backasswards society

'Proud Member of the NS Praetorian Guard

Viva La Praetorian Bitches'
 
yes u make a good point and i know that they r related but u missed what i was saying. which was that it is possible for a car with less hp to have more torque then a car with more hp.

 
I wouldn't disagree, But it all balances out. And the RPM part of the equation is not a total capable RPM number, it is simply where the most torque is present.

---------------------------------------------------

------------------------

'you pissed on a Black guy?! ......thats horrible-PJ

Like its any different than pissing on a white man, some people boggle my mind. hahaha hows that for race equality, in our backasswards society

'Proud Member of the NS Praetorian Guard

Viva La Praetorian Bitches'
 
mathimatically it balances out like u said. but say u have two cars with 400hp one of them has a lot of torque and the other has a lot of rpm but they both = 400hp. the one with torque is going to smoke the one with a lot of rpm unless the track has crazy long strait aways. thats why hp is not a good indicator for how powerful a car is going to be. that ties back to what i said hp sells cars torque wins races

 
Yeah It just depends on What kind of racing you are doin. But yeah i see your points. But people always talk like horsepower doesn't mean shit when they are directly related. But yeah i see what you mean.

---------------------------------------------------

------------------------

'you pissed on a Black guy?! ......thats horrible-PJ

Like its any different than pissing on a white man, some people boggle my mind. hahaha hows that for race equality, in our backasswards society

'Proud Member of the NS Praetorian Guard

Viva La Praetorian Bitches'
 
looks way to much like a grand prix or something..buy a 05 mustang

hardcore lousiana fanboat shit

'fuck! there's a damn boulder on the slope'

'put butter on my butt and call me a biscuit!'
 
I'm under the impression that horsepower is more important at high speeds, whereas torque is what glues you to your seat while accelerating.

___________________________________________________

no,my parents didnt go to college, my dad has a grade 9 education and my mom is a stupid slut -lateralis

'I don't like people who take drugs... Customs men for example.'

 
True ^sorta, as in the fact that horsepower involves rpm's and how high your peak torque is, but torque is just how much power it has to muscle through the gear to that peak RPM. Meaning that really what glues you to the seat is the gearing, anything can accelerate to almost doing a wheelie, but it also won't have any top speed

---------------------------------------------------

------------------------

'you pissed on a Black guy?! ......thats horrible-PJ

Like its any different than pissing on a white man, some people boggle my mind. hahaha hows that for race equality, in our backasswards society

'Proud Member of the NS Praetorian Guard

Viva La Praetorian Bitches'
 
*read this, I did and it all makes sense now*

Torque and Horsepower - A Primer

From Bruce Augenstein, rba@augenstein.ultranet.com

--------------------------------------------------------------------------------

There's been a certain amount of discussion, in this and other files, about the concepts of horsepower and torque, how they relate to each other, and how they apply in terms of automobile performance. I have observed that, although nearly everyone participating has a passion for automobiles, there is a huge variance in knowledge. It's clear that a bunch of folks have strong opinions (about this topic, and other things), but that has generally led to more heat than light, if you get my drift :-). I've posted a subset of this note in another string, but felt it deserved to be dealt with as a separate topic. This is meant to be a primer on the subject, which may lead to serious discussion that fleshes out this and other subtopics that will inevitably need to be addressed.

OK. Here's the deal, in moderately plain english.

Force, Work and Time

If you have a one pound weight bolted to the floor, and try to lift it with one pound of force (or 10, or 50 pounds), you will have applied force and exerted energy, but no work will have been done. If you unbolt the weight, and apply a force sufficient to lift the weight one foot, then one foot pound of work will have been done. If that event takes a minute to accomplish, then you will be doing work at the rate of one foot pound per minute. If it takes one second to accomplish the task, then work will be done at the rate of 60 foot pounds per minute, and so on.

In order to apply these measurements to automobiles and their performance (whether you're speaking of torque, horsepower, newton meters, watts, or any other terms), you need to address the three variables of force, work and time.

Awhile back, a gentleman by the name of Watt (the same gent who did all that neat stuff with steam engines) made some observations, and concluded that the average horse of the time could lift a 550 pound weight one foot in one second, thereby performing work at the rate of 550 foot pounds per second, or 33,000 foot pounds per minute, for an eight hour shift, more or less. He then published those observations, and stated that 33,000 foot pounds per minute of work was equivalent to the power of one horse, or, one horsepower.

Everybody else said OK. :-)

For purposes of this discussion, we need to measure units of force from rotating objects such as crankshafts, so we'll use terms which define a *twisting* force, such as foot pounds of torque. A foot pound of torque is the twisting force necessary to support a one pound weight on a weightless horizontal bar, one foot from the fulcrum.

Now, it's important to understand that nobody on the planet ever actually measures horsepower from a running engine. What we actually measure (on a dynomometer) is torque, expressed in foot pounds (in the U.S.), and then we *calculate* actual horsepower by converting the twisting force of torque into the work units of horsepower.

Visualize that one pound weight we mentioned, one foot from the fulcrum on its weightless bar. If we rotate that weight for one full revolution against a one pound resistance, we have moved it a total of 6.2832 feet (Pi * a two foot circle), and, incidently, we have done 6.2832 foot pounds of work.

OK. Remember Watt? He said that 33,000 foot pounds of work per minute was equivalent to one horsepower. If we divide the 6.2832 foot pounds of work we've done per revolution of that weight into 33,000 foot pounds, we come up with the fact that one foot pound of torque at 5252 rpm is equal to 33,000 foot pounds per minute of work, and is the equivalent of one horsepower. If we only move that weight at the rate of 2626 rpm, it's the equivalent of 1/2 horsepower (16,500 foot pounds per minute), and so on. Therefore, the following formula applies for calculating horsepower from a torque measurement:

Torque * RPM

Horsepower = ------------

5252

This is not a debatable item. It's the way it's done. Period.

The Case For Torque

Now, what does all this mean in carland?

First of all, from a driver's perspective, torque, to use the vernacular, RULES :-). Any given car, in any given gear, will accelerate at a rate that *exactly* matches its torque curve (allowing for increased air and rolling resistance as speeds climb). Another way of saying this is that a car will accelerate hardest at its torque peak in any given gear, and will not accelerate as hard below that peak, or above it. Torque is the only thing that a driver feels, and horsepower is just sort of an esoteric measurement in that context. 300 foot pounds of torque will accelerate you just as hard at 2000 rpm as it would if you were making that torque at 4000 rpm in the same gear, yet, per the formula, the horsepower would be *double* at 4000 rpm. Therefore, horsepower isn't particularly meaningful from a driver's perspective, and the two numbers only get friendly at 5252 rpm, where horsepower and torque always come out the same.

In contrast to a torque curve (and the matching pushback into your seat), horsepower rises rapidly with rpm, especially when torque values are also climbing. Horsepower will continue to climb, however, until well past the torque peak, and will continue to rise as engine speed climbs, until the torque curve really begins to plummet, faster than engine rpm is rising. However, as I said, horsepower has nothing to do with what a driver *feels*.

You don't believe all this?

Fine. Take your non turbo car (turbo lag muddles the results) to its torque peak in first gear, and punch it. Notice the belt in the back? Now take it to the power peak, and punch it. Notice that the belt in the back is a bit weaker? Fine. Can we go on, now? :-)

The Case For Horsepower

OK. If torque is so all-fired important, why do we care about horsepower?

Because (to quote a friend), 'It is better to make torque at high rpm than at low rpm, because you can take advantage of *gearing*.

For an extreme example of this, I'll leave carland for a moment, and describe a waterwheel I got to watch awhile ago. This was a pretty massive wheel (built a couple of hundred years ago), rotating lazily on a shaft which was connected to the works inside a flour mill. Working some things out from what the people in the mill said, I was able to determine that the wheel typically generated about 2600(!) foot pounds of torque. I had clocked its speed, and determined that it was rotating at about 12 rpm. If we hooked that wheel to, say, the drivewheels of a car, that car would go from zero to twelve rpm in a flash, and the waterwheel would hardly notice :-).

On the other hand, twelve rpm of the drivewheels is around one mph for the average car, and, in order to go faster, we'd need to gear it up. To get to 60 mph would require gearing the wheel up enough so that it would be effectively making a little over 43 foot pounds of torque at the output, which is not only a relatively small amount, it's less than what the average car would need in order to actually get to 60. Applying the conversion formula gives us the facts on this. Twelve times twenty six hundred, over five thousand two hundred fifty two gives us:

6 HP.

Oops. Now we see the rest of the story. While it's clearly true that the water wheel can exert a *bunch* of force, its *power* (ability to do work over time) is severely limited.

At The Dragstrip

OK. Back to carland, and some examples of how horsepower makes a major difference in how fast a car can accelerate, in spite of what torque on your backside tells you :-).

A very good example would be to compare the current LT1 Corvette with the last of the L98 Vettes, built in 1991. Figures as follows:

Engine Peak HP @ RPM Peak Torque @ RPM

------ ------------- -----------------

L98 250 @ 4000 340 @ 3200

LT1 300 @ 5000 340 @ 3600

The cars are geared identically, and car weights are within a few pounds, so it's a good comparison.

First, each car will push you back in the seat (the fun factor) with the same authority - at least at or near peak torque in each gear. One will tend to *feel* about as fast as the other to the driver, but the LT1 will actually be significantly faster than the L98, even though it won't pull any harder. If we mess about with the formula, we can begin to discover exactly *why* the LT1 is faster. Here's another slice at that formula:

Horsepower * 5252

Torque = -----------------

RPM

If we plug some numbers in, we can see that the L98 is making 328 foot pounds of torque at its power peak (250 hp @ 4000), and we can infer that it cannot be making any more than 263 pound feet of torque at 5000 rpm, or it would be making more than 250 hp at that engine speed, and would be so rated. In actuality, the L98 is probably making no more than around 210 pound feet or so at 5000 rpm, and anybody who owns one would shift it at around 46-4700 rpm, because more torque is available at the drive wheels in the next gear at that point.

On the other hand, the LT1 is fairly happy making 315 pound feet at 5000 rpm, and is happy right up to its mid 5s redline.

So, in a drag race, the cars would launch more or less together. The L98 might have a slight advantage due to its peak torque occuring a little earlier in the rev range, but that is debatable, since the LT1 has a wider, flatter curve (again pretty much by definition, looking at the figures). From somewhere in the mid range and up, however, the LT1 would begin to pull away. Where the L98 has to shift to second (and throw away torque multiplication for speed), the LT1 still has around another 1000 rpm to go in first, and thus begins to widen its lead, more and more as the speeds climb. As long as the revs are high, the LT1, by definition, has an advantage.

Another example would be the LT1 against the ZR-1. Same deal, only in reverse. The ZR-1 actually pulls a little harder than the LT1, although its torque advantage is softened somewhat by its extra weight. The real advantage, however, is that the ZR-1 has another 1500 rpm in hand at the point where the LT1 has to shift.

There are numerous examples of this phenomenon. The Integra GS-R, for instance, is faster than the garden variety Integra, not because it pulls particularly harder (it doesn't), but because it pulls *longer*. It doesn't feel particularly faster, but it is.

A final example of this requires your imagination. Figure that we can tweak an LT1 engine so that it still makes peak torque of 340 foot pounds at 3600 rpm, but, instead of the curve dropping off to 315 pound feet at 5000, we extend the torque curve so much that it doesn't fall off to 315 pound feet until 15000 rpm. OK, so we'd need to have virtually all the moving parts made out of unobtanium :-), and some sort of turbocharging on demand that would make enough high-rpm boost to keep the curve from falling, but hey, bear with me.

If you raced a stock LT1 with this car, they would launch together, but, somewhere around the 60 foot point, the stocker would begin to fade, and would have to grab second gear shortly thereafter. Not long after that, you'd see in your mirror that the stocker has grabbed third, and not too long after that, it would get fourth, but you'd wouldn't be able to see that due to the distance between you as you crossed the line, *still in first gear*, and pulling like crazy.

I've got a computer simulation that models an LT1 Vette in a quarter mile pass, and it predicts a 13.38 second ET, at 104.5 mph. That's pretty close (actually a tiny bit conservative) to what a stock LT1 can do at 100% air density at a high traction drag strip, being powershifted. However, our modified car, while belting the driver in the back no harder than the stocker (at peak torque) does an 11.96, at 135.1 mph, all in first gear, of course. It doesn't pull any harder, but it sure as hell pulls longer :-). It's also making *900* hp, at 15,000 rpm.

Of course, folks who are knowledgeable about drag racing are now openly snickering, because they've read the preceeding paragraph, and it occurs to them that any self respecting car that can get to 135 mph in a quarter mile will just naturally be doing this in less than ten seconds. Of course that's true, but I remind these same folks that any self-respecting engine that propels a Vette into the nines is also making a whole bunch more than 340 foot pounds of torque.

That does bring up another point, though. Essentially, a more 'real' Corvette running 135 mph in a quarter mile (maybe a mega big block) might be making 700-800 foot pounds of torque, and thus it would pull a whole bunch harder than my paper tiger would. It would need slicks and other modifications in order to turn that torque into forward motion, but it would also get from here to way over there a bunch quicker.

On the other hand, as long as we're making quarter mile passes with fantasy engines, if we put a 10.35:1 final-drive gear (3.45 is stock) in our fantasy LT1, with slicks and other chassis mods, we'd be in the nines just as easily as the big block would, and thus save face :-). The mechanical advantage of such a nonsensical rear gear would allow our combination to pull just as hard as the big block, plus we'd get to do all that gear banging and such that real racers do, and finish in fourth gear, as God intends. :-)

The only modification to the preceeding paragraph would be the polar moments of inertia (flywheel effect) argument brought about by such a stiff rear gear, and that argument is outside of the scope of this already massive document. Another time, maybe, if you can stand it :-).

At The Bonneville Salt Flats

Looking at top speed, horsepower wins again, in the sense that making more torque at high rpm means you can use a stiffer gear for any given car speed, and thus have more effective torque *at the drive wheels*.

Finally, operating at the power peak means you are doing the absolute best you can at any given car speed, measuring torque at the drive wheels. I know I said that acceleration follows the torque curve in any given gear, but if you factor in gearing vs car speed, the power peak is *it*. An example, yet again, of the LT1 Vette will illustrate this. If you take it up to its torque peak (3600 rpm) in a gear, it will generate some level of torque (340 foot pounds times whatever overall gearing) at the drive wheels, which is the best it will do in that gear (meaning, that's where it is pulling hardest in that gear).

However, if you re-gear the car so it is operating at the power peak (5000 rpm) *at the same car speed*, it will deliver more torque to the drive wheels, because you'll need to gear it up by nearly 39% (5000/3600), while engine torque has only dropped by a little over 7% (315/340). You'll net a 29% gain in drive wheel torque at the power peak vs the torque peak, at a given car speed.

Any other rpm (other than the power peak) at a given car speed will net you a lower torque value at the drive wheels. This would be true of any car on the planet, so, theoretical 'best' top speed will always occur when a given vehicle is operating at its power peak.

'Modernizing' The 18th Century

OK. For the final-final point (Really. I Promise.), what if we ditched that water wheel, and bolted an LT1 in its place? Now, no LT1 is going to be making over 2600 foot pounds of torque (except possibly for a single, glorious instant, running on nitromethane), but, assuming we needed 12 rpm for an input to the mill, we could run the LT1 at 5000 rpm (where it's making 315 foot pounds of torque), and gear it down to a 12 rpm output. Result? We'd have over *131,000* foot pounds of torque to play with. We could probably twist the whole flour mill around the input shaft, if we needed to :-).

The Only Thing You Really Need to Know

Repeat after me. 'It is better to make torque at high rpm than at low rpm, because you can take advantage of *gearing*.' :-)

Thanks for your time.

Bruce

___________________________________________________

no,my parents didnt go to college, my dad has a grade 9 education and my mom is a stupid slut -lateralis

'I don't like people who take drugs... Customs men for example.'

 
Back on topic, i love the car. It has a really sleek design. Not abstract. I think it's the perfect definition of a modern muscle car.

SkeeOrDie: I don't hate boarders, I hate fuckers, and 8-year olds that call everyone nigger face.
 
Sounds like a nice car, not that appealing tho:

04129171990004LRG.jpg'


-Matty

Kill his family and then at his funeral show him the videotape of you killing htem and then when he starts crying throw flour at him and shove poo in his nostrils. -Mikee talking about getting revenge on hackers
 
that's shit. I hate how it bulges behind the rear tire. Eww. It's like a fat chick. Plus look how it looks like one of those ugly corvettes from the 80's. Ass ugly.

___________________________________________________

no,my parents didnt go to college, my dad has a grade 9 education and my mom is a stupid slut -lateralis

'I don't like people who take drugs... Customs men for example.'

 
Back
Top